Vol.7, No. 1 (2011)

 

Al-Khwarizmi Engineering Journal,

 

Vol.7, No. 1 (2011)

 

No. Author Name  Title Abstract Full Text
1

Sadiq Jafer Abbass

Farah Mohammed Rudah Masoud

Biomechanical Concept Design of Artificial Human Hand.

This work is focused on the design parameters and activity of artificial human finger for seven grips. At first, obtained the ideal kinematics of human fingers motion by analyzing the grips video which were recorded using a single digital camera recorder fitted on a tripod in sagital plane while the hand is moving. Special motion analysis software (Dartfish) the finger joint angles were studied using the video recording. Then the seven grips were modeled using static torque analysis, which calculates the amount of torque applied on the fingers joint grip depending on the results of the kinematic analysis. The last step of the work was to design the actuator (Muscle Wire) of artificial finger for the seven grips in a simple design approach for artificial finger actuated by (Muscle Wire).

Full Text
2 Noor K. Muhsin

Noise Removal of ECG Signal Using Recursive Least Square Algorithms.

This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.

Full Text
3 Khalil Ibrahim Abaas

Comparison of Practical Investigations for CO Emissions Emitted From Single Cylinder S. I. Engine Fueled With Different Kinds of Hydrocarbon Fuels and Hydrogen.

Liquefied petroleum gas (LPG), Natural gas (NG) and hydrogen were all used to operate spark ignition internal combustion engine Ricardo E6. A comparison of CO emissions emitted from each case, with emissions emitted from engine fueled with gasoline as a fuel is conducted.

The study was accomplished when engine operated at HUCR for gasoline n(8:1), was compared with its operation at HUCR for each fuel. Compression ratio, equivalence ratio and spark timing were studied at constant speed 1500 rpm.

CO concentrations were little at lean ratios; it appeared to be effected a little with equivalence ratio in this side, at rich side its values became higher, and it appeared to be effected by equivalence ratio highly, the results showed that CO emissions resulted from gasoline engine were higher than that resulted from using LPG and NG all the time; while hydrogen engine emitted extremely low CO concentrations
Full Text
4 Miqdam Tariq Chaichan

Basement Kind Effects on Air Temperature of a Solar Chimney in Baghdad - Iraq Weather.

A solar updraft tower power plant (solar tower) is a solar thermal power plant that utilizes a combination of solar

air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity.

 This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatures. Three basements were used: concrete, black concrete and black pebbles basements. The study was conducted in Baghdad from August to November 2009.

Full Text
5 Karima M. Putrus

Implementation of Neural Control for Continuous Stirred Tank Reactor (CSTR).

In this paper a dynamic behavior and control of  a jacketed continuous stirred tank reactor (CSTR)  is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.

The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.

Full Text
6 Oday I. Abdullah

A Finite Element Analysis for the Damaged Rotating Composite Blade.

In this paper, the finite element method is used to study the dynamic behavior of the damaged rotating composite blade. Three dimensional, finite element programs were developed using a nine node laminated shell as a discretization element for the blade structure (the same element type is used for damaged and non-damaged structure). In this analysis the initial stress effect (geometric stiffness) and other rotational effects except the carioles acceleration effect are included.  The investigation covers the effect speed of rotation, aspect ratio, skew angle, pre-twist angle, radius to length, layer lamination and fiber orientation of composite blade. Full Text
7

Abdul wahab H. Khuder

Esam J. Ebraheam
Study the Factors Effecting on Welding Joint of Dissimilar Metals.

The aim of this work is to study the factors that affect the welding joint of dissimilar metals. Austenitic stainless steel-type AISI (316L) with a thickness of (2mm) was welded to carbon steel (1mm) using an MIG spot welding.  The filler metal is a welding wire of the type E80S-G (according to AWS) is used with (1.2mm) diameter and CO2 is used as shielding gas with flow rate (7L/min) for all times was used in this work.

The results indicate that the increase of the welding current tends to increase the size of spot weld, and also increases the sheer force.  Whereas the sheer force increased inversely with the time of welding. Furthermore, the results indicate that increasing the current and time of welding increases the diameter of weld zone, and decreases the sheer force.

Full Text
8 Ibraheem Kasim Ibraheem

A Digital-Based Optimal AVR Design of Synchronous Generator Exciter Using LQR Technique.

In this paper a new structure for the AVR of the power system exciter is proposed and designed using digital-based LQR. With two weighting matrices R and Q,  this method produces an optimal regulator that is used to generate the feedback control law. These matrices are called state and control weighting matrices and are used to balance between the relative importance of the input and the states in the cost function that is being optimized. A sample power system composed of single machine connected to an infinite- bus bar (SMIB) with both a conventional and a proposed Digital AVR (DAVR) is simulated. Evaluation results show that the DAVR damps well the oscillations of the terminal voltage and presents a faster response than that of the conventional AVR.

Full Text
9

Alaa A. Abdul-Hamead

Studying the Effect of Adding Doekhla kaolin Clay and

Alumina to Iraqi Bauxite on Some Physical and Mechanical and Thermal Properties

The aim of this work is to produce samples from Iraqi raw materials like Husyniat Bauxite (raw and burnt) and to study the effect of some additives like white Doekhla kaolin clays and alumina on that material properties were using sodium silica as a binding material. Five mixtures were prepared from Bauxite (raw and burnt) and kaolin clays, with an additive of (40) ml from sodium silica and alumina of (2.5, 5, 7.5,10 wt %) percentage as a binding material. the size grading was through sieving. Full Text
Copyright © 2016 Alkhwarizmi Engineering Journal. All rights reserved
3:45