Vol.12, No. 2(2016)


Al-Khwarizmi Engineering Journal,


Vol.12, No. 2(2016)



No. Author Name  Title Abstract Full Text

Bushra S. Albusoda, Laith A. Al-Anbary 

Performance Assessment of Pile Embedded in Expansive Soil. 


An evaluation for the performance of model pile embedded in expansive soil was investigated. An extensive testing program was planned to achieve the purpose of this research. Therefore, special manufactured system was prepared for studying the behavior of model pile having different length to diameter ratios (L/D). Two types of piles were used in this research, straight shaft and under reamed piles. The effect of model pile type, L/D ratio and number of wetting drying cycles were studied. It is observed that significant reductions in pile movement when under   reamed piles were considered. A proposed design charts was presented for straight shaft and under reamed piles to estimate the length of both types of piles that is required to exert minimized uplift pressure when the soil swells.

Full Text

Fadhil A. Chyad, Mohammed S.

 Hamza, Zainab I. Dhary 


Physical and Mechanical Properties of Synthesized Doped Nanoferrite.


Nanoferrite materials have been synthesized by sol-gel auto combustion method. The effect of doping different percentages of Y2O3 (0.34 µm) on the physical and mechanical properties of selected mixed ferrite [(Li2.5Fe0.5) 0.9(Co4Fe2O4) 0.1] by adding 10% Cobalt ferrite was studied. Physical properties (i.e. .density, porosity and water absorption) were affected by the doping, where the density increased about 32% at 6 wt% Y2O3, while porosity has a drastically decreased about 80% at 6% Y2O3 and has a correlation effect on the mechanical properties(Splitting  tensile strength and Vickers microhardnss). The fracture strength at 1 % wt. of  Y2O3 has doubled value of the undoped sample and then decreased. The same behavior shows with the testing of Vickers micro hardness.SEM ( Scanning electron microscopy ) micrographs revealed that the microstructure of the fracture surface of the samples consist of detached approximately closely packed particles and also showed the formation of micro agglomerated particles with some voids . By doping with Y2O3 the pores decreased and a dense material obtained  Full Text

Aseel Basim ALubaidi

Falak O. Abas 

Raghad A.Abass 

Nazar J. Abdulredhi 

Thermal Behaviour of Paraffin Wax/Poly Vinyl Alcohol Composite Material

Polymer additives binder system provides many properties useful in thermal energy storage (TES) then developed the efficient energy storage materials and green strength bodies system. This paper studies the thermal energy storage property for polyvinyl alcohol (PVOH) / paraffin wax (WPw) blends. To enhance paraffin wax thermal conductivity, PVOH as a material which high conductivity was employed. A fixed weight of Paraffin wax was dispersed with PVOH heterogeneously at different additive weights ratios of PVOH/Pw (50/50, 67/33, 75/25, and 80/20) wt. ratio respectively. The composite material was prepared using wetted pressing method.  Both base materials (polyvinyl alcohol and paraffin wax) were scanned using differential scanning calorimeter (DSC) under non-isothermal conditions, the result was analysed to determine the thermal transition temperature of PVOH and paraffin wax base material. The thermal decomposition of PVOH and waste paraffin wax proved that high transition temperature (TG) for PVOH reached 209ᴼc rather than wax of 60ᴼc respectively. This result shows that PVOH suppress the thermal stability of PVOH/waste paraffin wax composites. Afterward examines the thermal conductivity enhancement using Lee- disk techniques. Composite materials PVOH/paraffin wax have a high thermal conductivity which increases thermal conductivity of waste paraffin wax as a heat storage media and  this allows to apply change in phase with wide range of temperatures, and the highest decreased ratio of phase-change heat is very low, compared to that of paraffin only. Therefore, PVOH, added to paraffin which has significant potential for enhancing the thermal storage characteristics of paraffin. 


Full Text

Jalal M. Jalil 

Ihab Omar Abbas

Large Eddy Simulation in Duct Flow.

In this paper, the problem of developing turbulent flow in rectangular duct is investigated by obtaining numerical results of the velocity profiles in duct by using large eddy simulation model in two dimensions with different Reynolds numbers, filter equations and mesh sizes. Reynolds numbers range from (11,000) to (110,000) for velocities (1 m/sec) to (50 m/sec) with (56×56), (76×76) and (96×96) mesh sizes with different filter equations. The numerical results of the large eddy simulation model are compared with k-ε model and analytic velocity distribution and validated with experimental data of other researcher. The large eddy simulation model has a good agreement with experimental data for high Reynolds number with the first, second and third mesh sizes and the agreement increase near the wall of the duct. The percentage error for the large eddy simulation model with experimental data of the (56×56) mesh size is less than 18 % and for the (76×76) mesh size is also less than 17% and for the (96×96) mesh size is less than 16 %. The large eddy simulation model show high stability and do not need extra differential equation like the k-ε model and a great saving in time and computer memory was achieved.  Full Text


Ziad T. Abd Ali

Using Activated Carbon developed from Iraqi Date Palm Seeds as Permeable Reactive Barrier for Remediation of Groundwater Contaminated with Copper.

The possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model based on the solution of an advection-reaction-dispersion mass balance equation, using COMSOL Multiphysics 3.5a software which is based on finite element method, was developed to study the space and time concentration of copper within groundwater. Experimental and numerical results proved that the PRB represents a potential role in the restriction of the copper plume migration. Also, these results showed that the greater thickness of PRB results in a better treatment of copper and that the barrier starts to saturate with contaminant as a function of the travel time. However, a good agreement between the predicted (theoretical) and experimental results with RMSE not exceeded the 0.08 proved these methods are effective and efficient tools in description of copper transport phenomena adopted here. Full Text

Qasim Saleh Mahdi

Hayder Mohammad Jaffal

Energy and Exergy Analysis on Modified Closed Wet Cooling Tower in Iraq.

The present study involves experimental analysis of the modified Closed Wet Cooling Tower (CWCT) based on first and second law of thermodynamics, to gain a deeper knowledge in this important field of engineering in Iraq. For this purpose, a prototype of CWCT optimized by added packing under a heat exchanger was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the towers thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of air measured at intermediate points of the heat exchanger and packing. Exergy of water and air were calculated by applying the exergy destruction method on the cooling tower. Experimental results showed a significant performance improvement when using packing on the CWCT. It can be observed that the thermal efficiency for the CWCT with packing under a heat exchanger and CWCT with packing above the heat exchanger are approximately 40% and 25% higher than that of the CWCT without packing respectively. As another part of the experiment results, it is indicated that the exergy destruction is directly proportional to air flow rate, cooling water flow rate, inlet cooling water flow rate and inlet Air Wet Bulb Temperature (AWBT) whereas, it is inversely proportional with spray water flow rate. In comparison with the cooling capacity of the tower, it was found that the exergy destruction approximately less than 20%. Exergy efficiency behavior is inversely proportional with the behavior of the exergy destruction. Empirical correlations are obtained to predict water film heat transfer coefficient and air-water mass transfer coefficient considering the influences of operational parameters

Full Text

Ihsan Kadhom Abbas

Weldability of New Material Sandwich Steel for Automotive Applications.

Todays, World is faced an energy crisis because of a continuous increasing the consumption of fuels due to intension demand for all types of vehicles. This study is one of the efforts dealing with reduce the weight of vehicles by using a new material of sandwich steel, which consists of two skin steel sheets with core of a polymer material. Resistance spot welding (RSW) can be easily implemented on metals; however a cupper shunt tool was designed to perform the resistance welding of sandwich steel with DP800 cover sheets to resolve a non-conductivity problem of a polymer core. Numerical simulations with SORPAS®3D were employed to test the weldability of this new material and supported by many practical experiments. In conclusion, it was found that the weldability could be improved with using two pulses and optimized their welding parameters. Tensile-shearing tests were carried out to evaluate the strength of welding sheets. Macro/micrograph and SEM/EDS examinations were also carried out to analyze welding area and compare the nugget of welding sheets with different welding parameters. The concluded optimum welding parameters are; 3.5 kN, (5.5 kA, 8 cycles), and (10 kA, 5 cycles) for the electrode force, welding current and time of first and second pulse respectively. Full Text

 Arkan k. Al-Taaie

 Waheeds S. Mohammad 

Abbas J. Jubear 


Numerical Simulation of the Collector Angle Effect on the Performance of the Solar Chimney Power Plant. 

Sloped solar chimney system is a solar chimney power plant with a sloped collector. Practically, the sloped collector can function as a chimney, then the chimney height can be reduced and the construction cost would be reduced.The continuity, Naver-stockes, energy and radiation transfer equations have been solved and carried out by Fluent software. The governing equations are solved for incompressible, 3-D, steady, turbulent standard  model with Boussiuesq approximation  to develop for the sloped solar chimney system in this study and evaluate the performance of solar chimney power plant  in Baghdad city of Iraq numerically by Fluent (14) software with orking conditions such as solar radiation intensity (300,450,600,750 and 900 W/m2), and collector which angle (0°, 15° and 30°).The results show that the change of collector angle has considerable effects on the performance of the system.The velocity increases when the collector angle increases and reach to the maximize  value at a collector angle (30°). 

Full Text
9 Hussein Wheeb Mashi .Performance Enhancement of the South Baghdad Thermal Station Aim of the research is the study of improving the performance of the thermal station south Baghdad and the main reasons for reduced its efficiency. South Baghdad power planet comprises (6) steam turbine units and (18) gas turbine units .The gas turbine units are composed of two groups: the first group is made up of gas units (1,2), each of capacity (123) MW. The design efficiency of gas turbine units is 32%. The actual efficiency data of steam units is 18.3% instead of 45% which is the design efficiency. The main reason for efficiency reduction of gas units is the rejected thermal energy with the exhaust gases to atmosphere, that are (450-510) ℃.The bad type of fuel used (heavy) fuel. Another reason for the low efficiency and has a negative impact on the steam and gas units. The actual efficiency that is calculated to set the first group gas unit (1) is (27%). Suppose the steam is passed through the (HRSG) and this (HRSG) passes the combustion products emerging from first group gas turbine unit (1).  Full Text

 Mohammed Ali S. Mohammed 

Amjad J. Humaidi 

Ammar A. Al jodah 

Design and Simulation of L1-Adaptive Controller for Position Control of DC Servomotor. This paper presents L1-adaptive controller for controlling uncertain parameters and time-varying unknown parameters to control the position of a DC servomotor. For the purpose of comparison, the effectiveness of L1-adaptive controller for position control of studied servomotor has been examined and compared with another adaptive controller; Model Reference Adaptive Controller (MRAC). Robustness of both L1-adaptive controller and model reference adaptive controller to different input reference signals and different structures of uncertainty were studied. Three different types of input signals are taken into account; ramp, step and sinusoidal. The L1-adaptive controller ensured uniformly bounded transient and asymptotic tracking for both system's input and output signals, simultaneously with asymptotic tracking. Simulations of a DC servomotor with time-varying friction and disturbance are presented to verify the theoretical findings. Full Text
11 Majid Ahmed Oleiwi Experimental Investigations Performance for (VCC) Using 2-Way (PFCV) Type (2FRE). In modern hydraulic control systems, the trend in hydraulic power applications is to improve efficiency and performance. “Proportional valve” is generally applied to pressure, flow and directional-control valves which continuously convert a variable input signal into a smooth and proportional hydraulic output signal. It creates a variable resistance (orifice) upstream and downstream of a hydraulic actuator, and is meter in/meter out circuit and hence pressure drop, and power losses are inevitable. If velocity (position) feedback is used, flow pattern control is possible. Without aforementioned flow pattern, control is very “loose” and relies on “visual” feed back by the operator. At this point, we should examine how this valve works and how can use it in electro-hydraulic circuit designs.  In this paper, constructed and compared velocity control cylinder (VCC) by using a proportional flow control valve (PFCV) and with a fine throttle valve. With the aid of a check valve and that check valve, the proportional valve can be made to act in the “lift” direction, and the fine throttle in the “lower” direction. As with all proportional valves, there is also some hysteresis in a proportional flow control valve. The valve used in this work with a hysteresis of <±1% of  . The repetition accuracy is quoted in data sheet as < 1% of . The inferential results are good, acceptable and useful for designers which are working at hydraulic proportional field.  Full Text

Iman M.G. Alwan 

Enas Muzaffer Jamel 

Digital Image Watermarking Using Arnold Scrambling and Berkeley Wavelet Transform. Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations. Full Text



Copyright © 2016 Alkhwarizmi Engineering Journal. All rights reserved